Banner

A personal relationship with medical excellence

  • project-icon

    Partner: Fitfyles

  • tech-icon

    Technologies Used: Scala, Akka, Spark, Angularjs, Play Framework, MLib, Elastic Search, Mobile App technologies (Ionic Framework, Apache Cordova)

  • domain

    Domain: Healthcare

About Fitfyles

Fitfyles is a service which is disrupting the health seeker and healthcare space. It allows the healthseeker to get the ownership of records and its analysis back in their own hands instead of being dependent on clinics, hospitals and individual doctors. The healthseeker information usually is islands of unrelated information at various places. FitFyles not only aggregates that information at the click of a picture but also transcribes that data into usable information.

The Challenge

FitFyles wanted to take the next step with all the data that it had collected by offering the healthseeker a comparison of their prescription with others of similar profile. They called it "Third Opinion" This would allow the healthseeker to benchmark this prescription with the peers and allow them to seek second opinion or ask more informed questions from their doctors if needed. The major challenges for this feature were :

Terabyte-scale data volume: There are over 50 million unique prescriptions in over 1.5 billion user-generated medical record entries. Need for fast processing performance: The prescription data required a quick matching against the drug database and other clinical conditions to eradicate false matches or recommendations. Diverse and complex analytics algorithm needs: As part of the verification process, the member-input data needed to be normalized (e.g. removal of stop words, lower-case conversion), de-duplicated, and aggregated by a wide array of machine learning algorithms.

Our Solution

Knoldus worked along with Fitfyles through their raw data. Knoldus built the pipeline in Apache Spark because of Spark's ability to seamlessly integrate different data sources, the availability of data processing libraries within MLlib and GraphX, fast performance to avoid slow table joins, and being able to significantly speed up operations that could be parallelized in a distributed fashion.

The data pipeline with the analysis dashboard was built within 6 sprints and is a massive hit with the users of the platform.

Get In Touch:

Looking for similar or other solution for the healthcare industry? Get in touch or send us an email at hello@knoldus.com. We are proven, experienced Certified Lightbend Partner, available for partnering to make your product a reality.

Relevant Resources

undefined
Case Study

CASE STUDY

Knoldus implements an API testing pipeline & automation to ensure the quality of a health care company's aging and caregiving platform.

Build A Platform To Find And Analyze Content Across Traditional Data Silos To Derive New Value-Driven Insights.
Case Study

CASE STUDY

Elsevier enables the user to derive new data insights with the reactive technology stack and architecture

undefined
Case Study

CASE STUDY

How Zillion drastically reduces the processing time from hours to seconds with the 5X of load

Schedule a meeting