Developing Apache Spark Jobs is the easier part of the process but the difficult portion comes in while executing them under full load as each job is unique when it comes to performance. Spark programs often face bottlenecks in terms of CPU, network bandwidth, memory usage which stems from Spark's basic nature of in-memory computations.
In this webinar, we will deal with the problem of how optimally you can perform your job operations in Apache Spark. We will address common performance problems including -
Here's the agenda of the webinar -
Software Consultant
Sarfaraz Hussain is a Big Data fan working as a Software Consultant with an experience of 1+ years. He is working in technologies like Spark, Scala, Java, Hive & Sqoop and has completed his Master of Engineering with specialization in Big Data & Analytics. He loves to teach and is a huge fitness freak and loves to hit the gym when he's not coding.